Showing posts with label project. Show all posts
Showing posts with label project. Show all posts

Monday, July 1, 2013

Basics of Quadratic Functions iPad (Tablet) Project

For the last few years, when my students were learning about the graphs of simple quadratic functions (usually ones in the form y = ax2 + c), they would make posters of quadratic equations and label key parts.  As we discussed solving quadratic equations by graphing, students would make posters explaining the process

Last year, I combined these projects using the iPads our students had available:
BASICS OF QUADRATIC FUNCTIONS IPAD PROJECT
  1. Create a Keynote presentation or video that shows 2 quadratic equations and their graphs (one that opens up and one that opens down).
  2. Label these parts:
    1. Vertex
    2. Axis of symmetry
    3. Roots/zeros (if any)
    4. Minimum or maximum
  3. Show how to tell if a graph opens up or down just from the equation.
  4. Show how to find the vertex using the calculator.
  5. Show how to find the zeros/roots using the calculator.
As with the adaptable iPad project I shared last week, you could also give students the option of using the fantastic Educreations app.

Essentially this is the same project as those simple posters, but it utilizes the technology we had available in a meaningful way. While I would never want to replace every low or no-tech project I use, it's always important to take advantage of the resources you have.

Monday, June 10, 2013

An Adaptable iPad Project Idea

Last year was a pilot year with iPads in my district, and my students were part of the first lucky group to get them. Teachers were mostly left to their own imaginations to dream up ways to incorporate them into our instruction.  For this simple project, my students used their iPads to produce content instead of consume it.

In this example, we were working on factoring expressions, but you could do this project with any topic you are working on.  Students simply had to either make a video or presentation where they both visually and verbally explained how to solve example problem drawn from workbooks we used regularly (you could use any convenient source).
FACTORING iPAD PROJECT
MMA 11th
Mr. DeRosa

In this project you will show how to solve 4 types of factoring problems (choosing examples from the given pages):
  1. Factoring by GCF  (workbook pg 55)
  2. Factoring x2 + bx + c  (pg 56)
  3. Factoring ax2 + bx + c  (pg 57)
  4. Factoring Special Products  (pg 58)
Because you have to explain how to do the problems and show the steps involved, you have two options:

Option 1: Make videos of you working out the problem on paper or on a whiteboard (you can use the one in the classroom). How to submit:
  • Submit the videos by sending via message
  • Send it directly to me via message on Facebook.
Option 2: Download the free Educreations app from the App Store to record yourself explaining the example. How to submit:
  • Create an Educreations account, then send me a link to your presentation by email or text message.
  • Email for submission is thomas.derosa@myschooldistrict.net.
Educreations works like a virtual whiteboard on your tablet, recording what you see as well as audio.  You can start with a blank slate or add content before recording, such as an image you might want to draw on.  Creating and sharing presentations is simple, and for camera-shy students, it's better than requiring a video.

This might seem a bit too simple, but that's the point. This small scale project can replace tedious independent practice that might involve them doing problems out of a workbook or worksheet. The creativity involved is a way to engage your kids and get them to use their tablets for learning.

Have you used iPads or other tablets in similar ways? Share your ideas in the comments.

Thursday, September 20, 2012

Project Idea: What If You Lived in the World's Skinniest House?

Via GOOD
When I read about the world's skinniest house, a 47-inch wide building wedged between two big buildings in Warsaw, Poland, all I could think about is what I would be able to fit in there.  As a restless soul who has moved a dozen times in the last decade (including three times across the country) I have whittled down my belongings to a comfortable minimum over the years, so I probably could fit more than most.

Still, I had to visualize what 47 inches really looked like, which lead to countless questions: Could my bathtub fit in there? My kitchen table?  My bed?  (Answers: Yes / Yes, barely / Not unless you have a chainsaw handy).  Even if I could squeeze many things in there, how much room would I need to actually move around?  How wide am I?  Do I really want to be walking like an Egyptian at home all the time?

Of course, these are all math questions: measurement, scale, spatial reasoning and most importantly problem solving.  This would make a very thought provoking project for math students from grade 3 and up. 

Show the images to your students and have them answer a series of questions that will unlock more and more exploration:
  1. What does 47 inches actually look like?  How many feet is that?
  2. How much space do you need to move around?  How wide is your body?  How wide is your body if you turn sideways? 
  3. What items from the classroom could we fit in this house?
  4. If we wanted to move as much as possible from the classroom into the house, how much of it could we take?
  5. What would we be able to take if we still wanted to be able to move around the house (think about your answer to #2)?
  6. What items would have to be left behind?
Get some meter sticks and tape measures out and have them go at it.  Remember that they should be thinking in three dimensions, not just one or two.  Later, you can send your students home with a similar set of questions:
  1. What items would I be able to take from my own room (remembering how much space you need to move around)?
  2. What furniture and appliances from the bathroom, kitchen and other rooms in the house would be able to fit?  What would you have to leave behind or replace?
At the high school level, you could have students create a scale drawing of each floor of their 47 inch wide house with a floor plan of their stuff and how it would fit.  They would have to label where you would sleep, eat, sit, bathe, etc.  Elementary and middle school students could design and draw their own skinny house to illustrate all the things they discovered when measuring to see what items might fit (you might even give them a template or graphic organizer to fill out).

The real beauty of this project is that you would be able to incorporate writing at all grade levels (rewording these questions appropriately):
  1. Would you want to live in this house?
  2. If you did move into this house, what things do you have that you couldn't live without?  Would they fit?  If not, what would you do?  What would you be willing to leave behind? 
  3. What is the smallest space you would be willing to live in?
  4. What changes would you make to this house to make it better?
What else could you do with this?  Have you created, used or read about similar projects?  Share your ideas and resources in the comments.

Monday, July 23, 2012

Make Your First iPad Project About Using It For Academic Success

This past year, nearly all of my students received iPads as part of the district's ambitious one-to-one technology initiative.  It was a challenging transition, especially in terms of getting students to view and use their devices for academic purposes and not just for chatting, gaming or watching music videos.

So one of my first projects using the iPads was to get them to think about ways the devices could help students do better in school.

It was originally supposed to be a mandatory project, but I assigned it far too close to end of the grading period for that to be fair.  That's why it became an extra credit project.  I would highly recommend doing this project with every iPad-wielding student.
EXTRA CREDIT IPAD PROJECT – ALL CLASSES

Format: Video, Keynote presentation or publish online

Topic: 5 Ways Students Can Use Their iPad To Do Better In School
Sample Topics:
  • How to use the iPad to take notes
  • How to use the iPad to keep track of assignments, tests, grades, etc
  • How to study better with the iPad
  • Apps for drawing, making animations, editing pictures, etc
  • Apps/websites that can teach you one or many subjects (example: Khan Academy, iTunesU)
  • Where and how to get free eBooks, magazines, other things to read on your iPad
  • Useful apps/websites (calculators, dictionaries, references, etc)
****You should focus on the apps already on the iPad, free apps to download, and websites that students could visit. Creativity and originality will count for your grade.

****Videos should be less than 5 minutes. Presentations should no more than 10 slides.
I would make a couple of small tweaks if I did this project again: 1) allow more time, 2) change it to ten ways, and 3) increase the emphasis on finding useful apps.  In fact, I ended up creating a separate project later on where students found and installed practical apps due to that last oversight.

Many students did participate, and there were a lot of common themes throughout their suggestions: they could use the iPad to take notes, keep track of assignments (on a to do list or calendar), do written assignments, do research, and use the calculator.  I was also surprised by a couple of students who looked forward to videotaping my lessons so that they could replay them later, which I thought was great.

One final note: my district installed Keynote along with the rest of Mac's iWork suite. If your students don't have it, here is a list of alternatives your students could use.

Wednesday, December 14, 2011

Parent Function Poster Idea

Last week we were reviewing parent functions in my math models class.  After introducing and taking notes on different families of functions (linear, quadratic, square root, cubic and absolute value), it was time to dust off an old favorite to help cement it in their minds.

Adjusting the mini-poster idea from Ten Cheap Lessons, I had my students illustrate three parent functions (linear, quadratic and their choice of one other).  Their posters included the graph, equation, domain and range as well as 2 examples of other functions from that family (labelled as "babies," "kids" or simply "examples").  I'm a strong believer in the power of having students illustrate key ideas while creating their own examples to supplement them, and this idea was no different.

Above you can see a completed example.  I sketched something similar for my classes so they could easily see what I was asking for.  Below are directions they were given.

Versions of this mini-poster idea have been invaluable over the years.  Just recently I had my Algebra I students compare and contrast solving equations and solving inequalities.  It's a project that requires a minimum of supplies and preparation on your part: you just need unlined paper (color if possible, but it's not necessary) and markers or colored pencils to draw with.  You can also assign it as homework without worrying too much about whether your students will have what they need to do it (you can always provide some materials to those that do).

This should take students no more than one 45-55 minute class period to complete.  I counted it as a minor assessment (aka quiz) grade, but of course you should do whatever makes sense for you.

Have you used any variation on this theme?  Share it in the comments.

Monday, November 7, 2011

Equations vs. Inequalities Mini-Poster Project

The first chapter in my first book is entitled "The Mini-Poster," so it should be no surprise that it's a favorite that I constantly adapt to new topics.  This time around, I wanted to do a "six weeks" project to wrap up the grading period in Algebra I, where we've been working on solving equations and inequalities.

In this project, students make four mini-posters (one 8.5" by 11" page each) for four (technically seven) types of problems:
  1. One-step equations and inequalities
  2. Two-step equations and inequalities
  3. Multi-step equations and inequalities
  4. Special case for inequalities (when you have to flip the inequality sign)
Except for the last one, each poster is supposed to have what is essentially the same problem worked out the same way, but one is an equation and the other an inequality (with the sign of their choosing).  The difference is that the inequality has the particular sign and needs to be graphed on the number line.

By forcing them to do the mirror-image problems, the message is explicit: you solve both problems with the same steps.  Along with reviewing all of the problems, the purpose of this project is indeed to draw the clear connection between solving the two types of problems.  I told students to keep the title and "how to solve" sections the same as what's on the directions, but to change the examples (helpfully outlined in boxes) to their own

Regular readers will probably note that this isn't all that different from the Linear Equation Formula Book project I shared last week; indeed, one student that I have in both classes made the same connection fairly quickly.  That's because it's not really all that different.  But that's okay.


Download a PDF of the project directions here:


Here are some of my earlier mini-poster ideas for you to draw from:

Wednesday, November 2, 2011

Updated Linear Equation Project Idea

One of the lesson ideas I recently rediscovered was a project I dubbed the "Linear Equation Formula Book".  Student get to prove they can do the types of problems we've been focusing on throughout the unit in a way that doesn't seem like an assessment.

First, the kids create a "book" by folding two pieces of paper together (hamburger style).  On each page, they'll write a title, a formula/steps to follow, and include their own completed example.


On my guide I include completed examples of each page and type of problem we've been focusing on:
  1. Finding slope between two points
  2. Rewriting equations into slope-intercept form
  3. Finding an equation using point-slope form
  4. Graphing from slope-intercept form
  5. Finding x and y-intercepts
  6. Finding the slope of parallel and perpendicular lines
  7. Graphing linear inequalities
My students really had to just worry about using their own example--the title and formula/steps (explained in the way I usually break it down) could be the same.  While some students missed the point and just copied the whole thing verbatim, most did it right (or did so when it was returned to them to fix).

I like this as an effective review (or a fun alternative assessment in and of itself) because students have to demonstrate that they can successfully do each of these types of problem.  Either way, the book can stay with the students as a fun, accessible study guide for future state or end-of-year exams.

Download a PDF of my project directions below.  This is designed to take about two 45-55 minute class periods at most.

Linear Equation Formula Book (new fall 2011 version)

Here's are two alternate versions you can also draw ideas from:

Linear Equation Formula Book (2009 version)
Project Idea: Using Formulas to Find Area, Perimeter and Circumference

Monday, April 25, 2011

A Micro-reminder About Using Microcredit in the Classroom

A couple of weeks ago, I got an email update from Kiva letting me know that I had enough money in my account to reloan it ($25).  I chose to contribute to a young man named Robert who's trying to make his own way in Uganda.  For about $75, I've helped fund 9 projects in 8 different countries over the last 2 years.  It never ceases to amaze me how far a dollar can go in developing countries.

To follow up on my 2009 article 3 Ways to Use Microcredit to Invest Your Students, I'm bringing this topic up again as a possible end-of-year project for your classroom.  The last month or two of school is difficult to trudge through, and this kind of outside-the-box project can grab your students' attention and provides an opportunity to connect to the real world in a tangible way.

It can work in just about any subject or grade level: In a social studies course, your students could analyze the economy of the host country.  In ELA, you could use the description of the person or group you're loaning to as a springboard to creative writing about their life.  In math, start with finding the conversion rates for money and take off from their.  In short, use it as you would any thematic unit.

Plus, updates from the project might not come until after the school year has ended, giving your students an excuse to visit you next year!

Kiva also just announced a "Green Loans" program, so if your kids are interested in environmental projects (and so many are these days), it's just another reason to try it out.

Have you experimented with Kiva in your classroom or with your kids at home?  Share your experiences in the comments.

Monday, August 2, 2010

15 Classroom Uses for Printable Magnet Sheets

When I finished my DIY Tetris-style magnetic block project, I immediately began brainstorming more uses for these printable magnetic sheets.  I quickly amassed a list of 15 free, easy to make and use games, manipulatives, and practical items for the classroom.  Below you'll find ready-to-use printables as well as ideas you can adapt as needed.

1. DIY Magnetic Poetry - I had fun doing this with the scraps from my original project, as you can see.  Obviously the classroom applications for this are endless: create a set using any vocabulary, parts of speech, or sight words you want your kids to learn.  The size of each word is up to you and depends on what's appropriate for your kids.  Have your students manipulate them into sentences, create a story, fix an incorrect sentence, finish an incomplete statement, sort them by type, etc.  Create a magnetic word wall (just make sure they're words you want to reuse year after year).

2. Make contact info magnetic business cards for parents quickly and cheaply.

3. Art project to decorate your board, desk, filing cabinet, etc.  Make your own or ask your students to create it for you (a great classroom culture builder).

4. Holiday gifts for students, colleagues, or anyone who helped you during the school year.  You could use it for end of the year gifts as well.  Create art, print a class photo onto it, it's up to you to fill in the blank.

5. Tangrams - This is a novel alternative to cutting up paper to review spatial relations and geometry.  More applications for tangrams.

6. Jigsaw Puzzle - Print any relevant picture on the sheet, then take a Sharpie and draw some puzzlesque lines.  Warning: Don't go searching for free, printable blank jigsaw puzzles online-- you'll find too many malicious sites out there.  My PC is well protected, but yours might not be.  Better to avoid it altogether.

7. Geometric shapes to use as manipulatives.  Alternately, create a big shape that you can divide into fractional parts.

8. Calendar - Print your school's academic calendar so you never lose track of it.

9. Magnetic Sudoku - I created this 3 page PDF that contains the standard 9 of each digit from 1-9 that you can then arrange as needed.  Why pay for it when you can make it yourself?  Plus, you'll have leftover sheets for other projects from the list.

10. Create ships for my Battleship-style learning game.

11. Perpetual Calendar - This is one of my favorite brain teasers to give students, from the book Professor Stewart's Cabinet of Mathematical Curiosities.  The original creation was two cubes with different sets of numbers on each one in such a way that you could make all the dates in a given month from 01 through 31.  The problem is there doesn't seem to be enough spaces on the two cubes to do so.  I won't spoil the solution, but if you download the PDF I created, you should be able to figure it out from there.

12. Connect Four-style game -  Download my printable PDF (which looks like the image you see on the left) and have at it!

13. Deck of Cards - Take any deck you have, and use a scanner to create images that you can print onto the sheets.  With standard cards, you can fit 9 cards per sheet if you line them up 3 by 3, so you would need 6 sheets total to create an entire, accurate deck.  Of course, you could always just make a few key cards.

14. Random Number Generator - Print out the Sudoku PDF, put the cut out pieces in a bag, and pull out as many digits as you need.

15. Label sections of your board: Do Now, Homework, Agenda, etc.

Monday, June 14, 2010

A Lifetime in Six Words? Possible.

Unlocking the innate creativity within people is not always as difficult as you think. One intriguing example is the idea of the six word story, where the author must fit a complete story within a mere six words. The idea, which supposedly originated with Ernest Hemingway, lives on in the form of a Twitter meme and a recent book entitled Not Quite What I Was Planning: Six-Word Memoirs by Writers Famous & Obscure.

The latter is fascinating because each writer attempts to capture an entire lifetime in less words than the book's own title. What surprised me is the amount of memoirs that relate to learning or education. It gave me a lot to think about, and I think you'll agree. Here's a sampling:
Grading AP essays, I crave Tolstoy. -Carinna Tarvin

Learned reading, writing, forgot arithmetic. -Elizabeth Rose Gruner

Timid teacher takes 'tude from tykes. -Kathy Gates

Students laughed appreciatively. The professor relaxed. -Laurie Hensley

I colored outside of the lines. -Jacob Thomas

All of my students hate me. -Sharon Fishfeld

Educated too much, lived too little. -Dan Vance

My second grade teacher was right. -Janelle Brown

Learned. Forgot. Better off relearning anyway. -Brian DeLeeuw

High school dropout but college graduate. -Mary Beth Nalin

Used to add. Now I subtract. -Melissa Gorelick
I can't recommend the book enough. In a way, it's sort of a purely literary PostSecret. I'd love to hear from teachers who used this as a class project. Actually, I'd love to read your own six word memoir. Share both in the comments.

Monday, May 3, 2010

Six End of Year Lesson Ideas and Projects

As a practical follow-up to this week's episode of "Mr. D TV", here are six of my best lesson ideas and projects that should keep your kids engaged even with summer vacation this far away.
  1. Math in the Real World Project
  2. Lesson Ideas Using "Practical Money Skills for Life"
  3. How to Turn Jenga Into An Awesome Test Prep Tool
  4. 3 Ideas to Prepare Students for College Placement Exams (for HS juniors and seniors)
  5. Math in the Real World: Erasing Debt Activity 
  6. Using the Newspaper in Algebra I
A couple of these ideas (1 and 6) are part of my first book, Ten Cheap Lessons, which is designed to be just the kind of resource you need this time of year.  It's only $10 for the paperback or $2.50 to download.

If you have similar outside-the-box ideas for the end of the school year, please share them in the comments below!

Monday, April 26, 2010

Fun and Easy DIY Tetris-Style Magnetic Blocks

It's no secret to longtime readers of this blog that I'm a huge Tetris fan, and not just because it's fun: I've shared with you research about how it can reduce stress and build your brain as well.  Now I'm going to show you how to make your own blocks to create a your own hands-on, analog puzzle game.

You'll need one package of inkjet magnet sheets (you can get them at any office supply store for $10-15), enough ink to print five full-color sheets, and an exacto knife or quality scissors.

Download the five PDFs that contain the pieces arranged in a grid as you see below and print them on each magnet sheet (most come in packages of 5).  Make sure to give the magnet sheets time to dry after you print them.  I've also included a blank grid that you can use for creating your own block designs if you wish.

Each of the seven classic pieces used in most versions of the game are here, arranged so that 40 blocks are fit into the five sheets.  Each piece is made up of 1.5" squares so that they're big enough to be easy to use and see from a distance.

As for what you could do with this, I thought I would show you:



If you have ideas for using these blocks, the magnet sheets or anything related, share your ideas in the comments.  I'm excited to hear what you guys come up with!

Monday, March 29, 2010

Real Life Math Lesson Using the U.S. Census

Turning the U.S. Census into a relevant, real life math activity is about as easy as filling out the actual questionnaires--and that is more or less what you're going to have your students do.  Then, there's a lot that can be done with the data you collect.

First, download the 2010 Census Questionaire from the U.S. Census Bureau website.  While you can certainly collect and analyze this information without the form, having them use a copy of the real thing makes this a more authentic activity (and might remind them to tell their parents to fill it out at home).  The form really doesn't take long to fill out--even if you have a lot of people living with you--and of course students can only fill out as much as they know any way.

Start by dividing students into groups and having them fill out the forms together.  They can skip the phone number and last names for the other people in their house, but they should be able to check off and fill out everything else.  In their groups, students should tally totals of the number of people living in all homes as well as the number of people by age, sex, race, and relationship.  Then, have the groups share their totals with each other, so that everyone should have a complete set of data.

Now it's time to analyze the data.  There are a lot of options for what to do from here, but I have a few suggestions:
  • Find the mean, median, mode and range for age.
  • Construct a stem-and-leaf plot, box-and-whisker plot or simple histogram to represent the age data.  
  • Convert the raw data for sex, race and relationship into percentages.  Ideally they would construct pie graphs to illustrate the data.
  • Find and graph totals for these age groups 0-12, 13-17, 18-25, 26-34, 35-44, 45-55, 55 and up.  The data could be graphed by totals or percentages.
  • Using the most current population estimate for your community, use proportions to extrapolate numbers of people by age, sex and race for your entire town or city.
  • Compare your data to the 2000 Census or other recent surveys on the American FactFinder website.
If you teach multiple classes per day and do this activity with each of them, consider adding one more day to this lesson and having students analyze the combined data for all of your classes.  I think that through this entire process, students would be very interested in what they were finding and willing to do what might otherwise be looked upon as tedious work.  In addition, you can go back later and ask very specific questions about the data that your students collected.

After the activity, I would ask a series of questions to help them draw conclusions about the data--a vital skill for standardized tests (among other things).  For example:
  1. According to the data, what is the largest age group in our community?  What is the smallest?
  2. Is this data we collected an accurate sample of our community?  Why or why not?
I feel like we're just barely scratching the surface here.  What else could be added to this activity?  Share your thoughts and ideas in the comments.

Tuesday, March 16, 2010

March Madness Probability Activity & More

I've been glad to see an upswing in the number of different March Madness math lessons being shared online recently (see below for links).  Each one seems to be focusing on different parts of the tournament or looking at it through a different lens.  Designing an interesting probability activity based around the NCAA Men's Basketball tournament has been a goal for years, so I'm excited to unveil this first version.

The main focus of this activity uses the success of teams by seed (since 1979).  First, students find the probability of a given seed winning the tournament both as a fraction and percent.  Then, they use those numbers to answer a number of questions.  There's an opportunity to talk about the difference between experimental and theoretical probability, as well as compound probability (see the challenge question).

I would follow up this activity by having students fill out a bracket using the statistics they've learned or whatever method they choose.  Personally, I enjoy picking the winners based on which mascot would win a no-holds-barred steel cage match.  After each round, you can have students update their brackets, recalculate their probability of winning, and compare theoretical with experimental probability again based on the results.  After the tournament is over, have students tally points for the correctness of their bracket (1 point for each opening round game, 2 for the second round, and so on, with 6 points for predicting the correct champion).

This is the kind of obvious real life math connection that almost any student can understand and get excited about, so we should do what we can to work it into our curricula.

March Madness Probability Activity
NCAA Men's Basketball Tournament bracket [via ESPN]

Here are some other lessons, activities and ideas based on the big tournament from around the web:
  1. Figure the Winner - Focuses on percentage, measures of central tendency
  2. Elements of Binary in the NCAA Basketball Tournament - Focuses on binary trees, logarithms, laws of exponents, geometric series and sequences, and probability (among other advanced topics)
  3. March Madness web quest - Designed for middle school math students.
  4. Interdisciplinary March Madness project - For grades 4-6
  5. Scoring March Madness - How to score brackets after the tournament.
  6. Adding Academics to the Big Dance - The Quick and the ED discusses graduation rates of the teams in this year's tourney.

Thursday, February 11, 2010

Turn a Super Bowl Office Pool into a Classroom Project

This past Sunday, I watched the Super Bowl with a group of friends who weren't football fans by any stretch of the imagination.  Yet they were watching the game (and the commercials) intently because they desperately wanted to win our Super Bowl pool.  Shortly before kickoff, we predicted everything from the final score to how many times Kim Kardashian would be shown during the game.

I've been to Super Bowl parties in the past where it seemed like I was the only person who actually wanted to watch the game, while the others were interested in just the commercials (or just the company).  I realized that even though I was totally into the game itself, my friends who weren't into football needed the pool to get invested in the game.

You might argue that their investment wasn't authentic, that they weren't really invested in the game because they weren't invested in football in general.  Yet don't we deal with these same issues in the classroom every day?  Our students rarely care as much about our subject matter as we do, so we have to appeal to their intrinsic motivation or create an extrinsic one with a constantly evolving array of strategies.

So here's a crazy idea: let's create a "Classroom Pool" modeled on these Super Bowl office pools to motivate and invest students at a much higher level.  Let's have students make predictions on all the happenings in your classroom over the course of, let's say, a week.  I think that would get quite a few students to pay close attention for the duration of the project, and likely beyond. 

Here's a list of potential question stems you could use:
  1. The first assignment we'll get this week will be...  A. worksheet  B. project  C.  reading & writing  D. interpretive dance  E. other
  2. How many total [tests / quizzes / projects / assignments ] will we get this week?
  3. How many times will [teacher name] say [funny or quirky thing you say all the time] this week?
  4. How many times will [teacher name] do [funny or quirky thing you do all the time] this week?
  5. The first day we'll [see / hear the items from #3 and #4] will be...
  6. The first student to ask ["What are we doing today?" or other irritating phrase] will be ...
  7. The first day we'll hear [the phrase from #4] will be...
  8. My grade on this week's quiz will be ___ (letter grade).  BONUS: closest number grade (without going over)
  9. How many times will [kid who does funny thing] do [that funny thing] this week?
  10. Total number of class interruptions (announcements, calls from office, people coming into the room, emergency situation, etc) this week: ____
  11. How many snow days will we have this week?
  12. My class participation percentage for the week: ____  Class average: ____
  13. My homework completion percentage for the week: ____   Class average: ____
You could craft any or all of these questions to lead towards a desired outcome.  Instead of leaving many of these open ended, you could make them multiple choice, and have all of the choices be things you would be happy with.  For example:

How many times will [teacher name] have to stop the lesson for disruptions? 
A. Zero
B. Once
C. Twice

You could do the same with #12 and #13 above, making the options something like 80%, 90% and 100%, which will certainly motivate some students.  There's an infinite number of ways to adjust it to fit your needs.

As for prizes, I think the competition of the game will provide all the extrinsic motivation needed.  The winner(s) will probably be happy with something intangible like having their name up on a bulletin board so they can brag on their mad skills.  This way, it's ultimately about you doing whatever you can to get your students invested, and they will try harder merely because you are trying so hard.

I'm not proposing this as a long term solution to your problems, but one more thing to put in your toolbox.  I hope that you will look for inspiration in unlikely places in order to come up with new and better strategies to get your kids to the ambitious goals you've set for them.

Have ideas for additional questions or ways to extend and adapt this?  Share them in the comments or link to this in your own blog post.

Thursday, August 27, 2009

History Week, Day 5: Constitutional Expert Project

In December of my second year of teaching, I was absolutely despondent. My classes were not going very well and I wasn't very happy with myself as a teacher. Desperate to create the kind of exciting, student-centered classroom I had always dreamed of having, I went to my TFA advisor and asked for guidance. With her help, I created what is still the most ambitious project I've ever asked students to do.

It's called the Constitutional Expert Project, which asked students to "focus on either: one of the amendments we studied, the entire Bill of Rights, or the principles of the U.S. Constitution (popular sovereignty, federalism, checks and balances or separation of powers)." I wrote about introducing this project at the time:
It was grander in scale than anything I had thus far tried, and required me to really sell it to them at the beginning in a way I had never successfully done before...

I dressed up like a waiter and arrived Wednesday in character as head waiter of DeRosa's New Jersey Diner, where the options are endless and there's plenty of "food" (knowledge) available for any budget. Based on what they knew coming in about what we had been doing the past week, they would pick from different sets of assignments--pictures, songs/raps, writing their own amendment, skits, surveys, letters to the editor, PSAs, etc.
It is a highly differentiated project that's meant to incorporate many learning styles. After introducing the basic premise of the project, each student completed the "wallet check" diagnostic to see what they could "afford" (which types of assignments they could choose from). There's a graphic organizer and rubric included to keep them on task and show them how they will be graded.

Here's a small sample of what my students came up with:

1st amendment poster
3rd amendment poster
14th amendment posterThere were also puppet shows, skits, new proposed amendments and opinion pieces. Needless to say, it was exciting to witness both the creation of their projects and their presentations.

I have to give a lot of credit to materials I found in my TFA curriculum and examples of projects my TFA advisor gave me. As with just about everything good I've done in the classroom, this was the product of many other people's good ideas. Of course, I comfort myself in the fact that most good teachers "beg, borrow and steal" to create their best lessons.

Tuesday, August 11, 2009

Three Fun Probability Games and Projects

I did a lot of research on probability lesson plans this past year, but I really didn't like a lot of what I found. I found that most of them they just weren't any fun, which in my mind seems to go hand in hand with probability. So here's two new resources I found, an old idea worth revisiting, and advice about setting up your students for success on this topic.
  1. Mathwire.com One-Die Toss Activities - This site has a bunch of dice-based probability games. I recommend Pig, Skunk and the Cheerios Experiment (which really should be named after a more unhealthy, toy-promoting cereal), as all of them were successful in class.
  2. Design Your Own Game Project [Word doc] - Students design their own carnival-style game, calculate the probabilities involved and reflect on what they learned and created. It's simple to explain but will push your students to really think about probability in this kind of context. The document includes a rubric as well. My students really enjoyed doing this, both in Algebra I & II. If you have the time and resources, you could even have a "Carnival Day" where students would play each other's games. This game was found online and the link had been dead for a long time, but I found a copy in my records.
  3. Probability Using "Deal or No Deal" - This is arguably my most popular lesson plan idea ever, but I actually want to make sure you read the opening coin-flipping activity I used before starting the game. Even if you don't use the game itself, you should absolutely open any probability unit with that fun activity.
Setting students up for success with probability

Unlike in the Rio Grande Valley, many students in Boston didn't know the basics of a regular deck of cards. I would imagine that is the case in many areas these days, as kids move farther and farther away from the traditional games you and I might have played in our youth. First, it might help to post this in the room somewhere for your entire unit:
A regular deck of cards has:
52 cards total
26 red (13 diamonds, 13 hearts) and 26 black (13 spades, 13 clubs)
Each of the 4 groups has the cards 2-10, J, Q, K, and A
Probability questions involving playing cards are one of the most common asked on standardized testing in both Massachusetts and Texas (and we all know how much influence the latter has, for better or worse). Your students need to be ready for them, and I think it will make other probability questions easier as well.

You can ask simple questions as a review and check to make sure they're simplifying each fraction, then move on to asking them about independent and dependent events. Your textbook and supplemental material is probably full of these types of questions as well.

Finally, some students will need an actual deck of cards in front of them to understand the questions, which is another good reason to make sure you always have one in your classroom!

Thursday, April 9, 2009

Solving Quadratic Equations by Graphing Mini-Project

Here's a simple, tiny alternative assessment for solving quadratic equations by graphing:
Finding Zeros Mini-Poster Project
  1. Graph one quadratic function that has two zeros (create one or use one we did in class).
  2. Show how to find the zeros using a table.
  3. Show how to find them using the graphing calculator’s “zero” function.
    • Buttons to press
    • What to do when it says “Left bound?” “Right bound?” and “Guess?”
  4. Mark the zeros on your graph clearly.
Alternately, you could ask students to graph three equations: graphs with one, two or no zeros. I also stress that solutions, zeros, x-intercepts and roots are all different words for the same thing, and you could have them work it into the title of their posters.

This project can be scaled up or down (a huge poster vs. a single piece of graph paper) and easily incorporated into a larger unit on the various methods for solving quadratic equations.

As always, share your related ideas in the comments!

Thursday, April 2, 2009

Basics of Quadratic Functions Project Idea

Up until recently, my Algebra I students had faced an uninterrupted string of quizzes each Friday--something like five weeks in a row. I usually mix things up a little more than that, so this project was a long time coming.

This is a poster project that covers the some of the basic vocabulary of quadratic functions:
Students make 2 graphs of 2 quadratic functions, one that opens upward and one downward. They label the parts, then explain the significance of "a" in ax2+bx+c and how to find the axis of symmetry and vertex using the function.

Last year, I did a similar poster project about parent functions that you could also use. If you're wondering about transformations of quadratic functions, I covered that this week and am continuing that this week. That topic might also be well suited to a poster project as well!


These posters can be any size, but are designed to be simple and scalable. If you like this idea, it's a remix of Idea #1 from my book Ten Cheap Lessons: Easy, Engaging Ideas for Every Secondary Classroom. There's more great inspiration inside!

Wednesday, March 25, 2009

On Success, Part 2: New Games & Projects

This is part of a two-week series on my five biggest successes and failures as a teacher this year. This week is focused solely on success.

I'll be the first to admit that I abandoned many successful elements of my past classrooms this year. I also didn't have much experience teaching Algebra II beyond a stint at an alternative school, so I didn't have the wealth of resources as I did for Algebra I. Yet despite these setbacks, I've created a number of new lesson ideas, games and projects this year in both courses.

Algebra I
I'm a near-perfectionist. That is, I am rarely satisfied with my ideas and tweak them every year, no matter how successful they might have been before. Of course, I still go forward and use my unfinished strategies to teach out of necessity. I'm happy that not only did I improve many good lessons, I created new ones to cover a wide range of topics:
  1. New Version of "Students Become The Teacher", 9/27/08 (Idea #8 in my book Ten Cheap Lessons)
  2. How to Improve the Combining Like Terms Game, 9/27/08
  3. 2008 version of the Math in the Real World project, 10/9/08 (Idea #4 from TCL)
  4. Basic Geometry Formula Book project, 10/26/08
  5. Coordinate Plane Battleship Game: 2008 edition, 11/21/08
  6. Linear Functions Mini-Poster project, 12/14/08 (Remix of Idea #1 from TCL)
  7. Linear Equations Formula Book project, 1/12/09
  8. Multiplying Polynomials and FOIL review games, 3/4/09
Algebra II
I had a much harder time coming up with ideas for Algebra II, as I have not deconstructed and planned out the clearest explanations for the much more complex concepts I have to teach. I'm starting to feel comfortable in breaking things down now, and building interesting projects and games around the topics.
  1. See #1 & #3 above.
  2. Transformations of Exponential and Logarithmic Functions project, 1/27/09
  3. Transforming Logarithmic Functions Bingo, 2/8/09
  4. Straightforward Example Posters, 3/10/09
There's still much more to come in both subjects, as I feel my creative juices are flowing quite well these days. I get so much satisfaction when I hear from readers that they used my idea in class or that it inspired them to create something.

In a Sentence
Keep improving your teaching, no matter how long you've been doing it.